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Abstract 

A new atomic electron-density function is derived by 
Fourier transformation of resolution-truncated atomic 
scattering factors. It forms the basis of a new real- 
space refinement method, RSREF, that is a substantial 
improvement on prior implementations that did not for- 
mally consider the absence of high-resolution terms in 
a typical macromolecular electron-density map. Real- 
space refinement is further improved through the simul- 
taneous refinement of stereochemical restraints analo- 
gous to reciprocal-space methods. Parallel refinements of 
a viral capsid structure show that real-space refinement 
produces models that are at least as good as those refined 
in reciprocal space, by either restrained or molecular- 
dynamics methods, and that refinement cycles are ~50 
times faster. Real-space refinement will not replace 
reciprocal-space methods for proteins, where, without 
the high noncrystaUographic symmetry of viruses, ex- 
perimental phases and electron-density maps are not of 
the same high quality. However, applied to local regions, 
it can be used to speed up and improve the quality of 
interactive model building before a full refinement is 
started. 
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1. Notation 

Atomic radius 
Real and imaginary parts of a structure 
factor 
Temperature factor 
Reciprocal-space distance from origin 
Reciprocal-space resolution limits 
Observed and calculated structure factors 
Form factor 
Scattering factor with thermal motion, 
g = f(d*)exp(-Bd*2/4) 
Fourier transform of a solid sphere 

* Current address. 
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Reciprocal-space distance 
Reflection index 
Total number of reflections 
Scaling constant (reciprocal space) or 
threshold (real space) 
Number of atoms 
Overall residual minimized in least 
squares 
Residual difference between model and 
ideal stereochemistry 
Residual difference between observed 
and calculated electron density 
Residual difference between observed 
and calculated structure factors 
Conventional reciprocal-space R factor 
Real-space R factor 
Reciprocal-space free R factor (Briinger, 
1992) 
Radial distance from the center of an 
atom 
Maximum r for calculation of electron 
density 
Maximum r for calculation of deriva- 
tives 
Electron density for the mth atom 
Electron density calculated from all 
atoms of a model 
Observed electron density 
Scale constant to bring Po to an 
absolute scale 
Generic Fourier transform 
Figure of merit 
Number of electrons in an atom 

2. Introduction 

Although real-space methods of refinement were ap- 
plied successfully to some of the first protein struc- 
tures (Diamond, 1974; Deisenhofer & Steigemann, 1975; 
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Watenpaugh, Sieker, Herriott & Jensen, 1973), they have 
now been supplanted by reciprocal-space methods (Hen- 
drickson, 1985; Briinger, Kuriyan & Karplus, 1987). The 
main advantage of reciprocal-space methods is that the 
minimization of the difference between observed and 
calculated structure factors, Eh(IFgbs I --IF£~¢I)~, is 
independent of poorly determined experimental phases. 
In real-space refinement, a difference between observed 
and calculated electron densities, f ( P o -  Pc)Zdv, is mini- 
mized. Po is calculated using the experimental phases 
(isomorphous replacement, symmetry averaging etc.) or 
from a preliminary atomic model, in which case refine- 
ment may be biased towards the preliminary model. 

There are several niches for which real-space refine- 
ment is well suited. Prior to reciprocal-space refinement 
and between rounds of the refinement, much time is 
spent manually optimizing the fit of the model to the 
electron density to ensure that it is within the con- 
vergence radius of automatic refinement. Real-space 
refinement has previously been used within interactive 
molecular modeling programs (Jones, 1978; Jones, Zou, 
Cowan & Kjeldgaard, 1991), to hasten modeling by 
reducing the interactive input required. The methodo- 
logical improvements described here may extend greatly 
such applications of real-space refinement. 

The convergence radius of reciprocal-space refine- 
ment is sometimes increased through the use of molecu- 
lar dynamics (Brtinger et al., 1987) or through relaxation 
of the stereochemistry of restrained refinement (Hen- 
drickson, 1985). Misuse of  such methods has increased 
the possibility of errors in structure determinations (re- 
viewed by BriLrld6n & Jones, 1990). Although t h e / ~  
factor of Briinger (1992) should help to detect such 
errors, some might be avoided by starting refinement in 
real space before moving to reciprocal space. Real-space 
refinement has a large convergence radius (Diamond, 
1985) even with good stereochemical restraints (see 
below) and it also incorporates more observational re- 
straints through the implicit use of phases in addition 
to structure-factor magnitudes. Real-space refinement is 
also the method of choice for bootstrapping the phases 
of partial models where it has been shown that under- 
restrained reciprocal-space refinement can bias suppos- 
edly bias-free omit maps (Shreuder, Curmi, Cascio & 
Eisenberg, 1990; Hodel, Kim & Briinger, 1992). 

The phases of virus crystals, refined through the appli- 
cation of 20- to 60-fold noncrystallographic symmetry, 
are of unusually high quality. Arnold & Rossmann 
(1988) showed that reciprocal-space refinement was im- 
proved through the addition of explicit phase restraints. 
It is likely that the implicit use of phases in real-space 
refinement will also be beneficial. Owing to their large 
size, the refinement of virus structures is a daunting 
task. There are often more than 106 reflections and each 
calculated structure factor depends on all the atoms of 
each of the noncrystallographically symmetry related 
capsid proteins. Thus, it has become common practice 

to refine virus structures against subsets of the data 
(Arnold & Rossmann, 1988). By contrast, in real-space 
refinement, all of the data can be implicitly used in a 
symmetry-averaged map, but only one of the symmetry 
equivalents needs to be refined. A 50-fold increase in 
speed has been realized when comparing real-space 
refinement on a modest workstation with vectorized 
reciprocal-space refinement on a Cyber 205 computer. 

Real-space refinement has not achieved its full po- 
tential for two reasons. Firstly, the function previously 
used to model the electron density of each atom is 
appropriate only at very high resolution. Secondly, good 
stereochemistry has been imposed through constraints, 
which, in reciprocal-space refinement, has a smaller 
convergence radius than the addition of stereochemical 
'observational' restraints (Waser, 1963; Hendrickson, 
1985). 

Diamond (1971) modeled the electron density at a 
distance r from the center of an atom as a spherical 
Gaussian: 

pc(r) = (Z /a  3) exp ( - l rr2/a2) ,  (1) 

where Z is the number of electrons in the atom and 
a is the atomic radius, which is related to the atomic 
temperature factor by 

a = (B/47r) 1/2 if d* = 2sin0/A. (2) 

Low-resolution cases, typical of macromolecular crys- 
tallography, were modeled using inflated atomic radii/B 
factors, either by uniformly increasing the radii of all 
atoms (Deisenhofer & Steigemann, 1975), or by refin- 
ing them independently (Fermi, 1975). This presents 
two problems. Firstly, refined temperature factors no 
longer correspond, in a simple way, to the actual atomic 
vibration. More importantly, no B factor can model a 
sharp drop in the scattering due to a resolution limit im- 
posed during data collection or processing. Algorithms 
for pseudo-real-space refinement (Tronrud & Ten Eyck, 
1992), which calculate the derivatives from a resolution- 
truncated difference map, avoid this and other problems 
described below. However, the Fourier transformations 
of pseudo-real-space methods are calculated using the 
entire contents of the unit cell and are not well suited 
to fast refinement of local regions of the unit cell. By 
contrast, the approach here is to derive a resolution- 
dependent electron-density function that could be used 
for rapid refinement of a small part of a unit cell. The 
local region might contain a few residues of a protein 
(during interactive modeling) or one of several equiva- 
lent proteins related by noncrystallographic symmetry. It 
is this second application that is demonstrated here using 
a virus structure refinement as an example. 

Previous implementations of real-space refinement 
have used constraints to impose standard stereochem- 
istry. Diamond (1971) reduced the average number of 
positional parameters per atom to 0.75 by allowing 
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only torsion angles to vary. Real-space refinement was 
alternated with energy refinement (Levitt, 1974). Jones 
& Liljas (1984) searched for an optimal fit of rigid- 
body fragments of amino acids, alternated with geo- 
metrical regularization of bonded geometry (Hermans & 
McQueen, 1974). In the implementation described here, 
TNT's program SHIFT (Tronrud, Ten Eyck & Matthews, 
1987) is used to calculate shift vectors from derivatives 
calculated by TNT's stereochemical module, GEOME- 
TRY, and a real-space module described below. In this 
protocol, the fit to the map and the stereochemistry are 
simultaneously refined in a manner analogous to current 
reciprocal-space refinement methods (Tronrud et al., 
1987; Hendrickson, 1985). The stereochemical restraints 
include both bonded and nonbonded interactions. 

3. Theory 

3.1. Electron-density calculation 
The atomic scattering factor If(d* 1] is, by de~finition, 

the Fourier transform of an isolated atom. The electron 
density of an atom can therefore be calculated through 
an inverse three-dimensional transform of a scattering 
factor. It is assumed that the electron density of a mole- 
cule is the sum of the electron densities of the constituent 
atoms. It is also assumed that the atomic scattering fac- 
tors, electron-density distribution and thermal vibration 
are spherically symmetric (isotropic). Let the scattering 
factor, g(d*), of a vibrating atom be approximated by 
a set of n finitely thin resolution elements, Ad*, of 
uniform scattering power, g(d~: 

: 0 

0 

if d*_ l < d *  < d *  
. 

if d* < dmin 
if d* > dm~ 

(3) 

(dmax, d ' in) ,  Note that, beyond the resolution limits * 
g(d*) is zero. Through this resolution truncation of the 
scattering factor, it is possible to accurately represent the 
electron density of a map calculated using data between 
fixed resolution limits. Equation (3) approximates the 
scattering power as a set of discrete spherical shells each 
with weight g(d~. In a compromise of precision for 
computational efficiency, g(d~ is sampled at a single 

be calculated analytically (cf. Rossmann & Blow, 1962): 

T(r) = w( ~Trh .3 {3[sin (27rh*r) 

- 2 h* (2 h* 

= 47rwG(r,h*), (6) 

where 

G(T, h*) = h .3 { [Sill (271"h* r) - 271-h*r cos (271-h* r)] 

× (7)  

As the transform of a sum is the sum of the transforms, 
the transform of a spherical shell of radii h~ > h~ is 

T(r) = 47rw[G(r,h~) - G(r,h*)]. (8) 

Similarly, the transform of the sum of n spherical shells 
is the sum of the individual transforms: 

: T(r) = 47r~-]~ ivi[G(r,h*) - G(r,h*_l) ] . (9) 
i = 1  

The electron density p(r) at a distance r from the 
atom's center can be calculated by a similar Fourier 
transformation of (3): 

o (:) 
p(r) = 4~rOEg -d [G(r,d*) -G(r,d~_l)], (10) 

i = 1  

where O is the fractional atomic occupancy. Equa- 
tion (10) is the atomic electron-density function for an 
individual atom, which, to distinguish it from other func- 
tions, is termed the FT(f) function (Fourier transform 
of a form factor). 

There are several equivalent forms and derivations 
of (10). The three-dimensional Fourier transform of 
an isotropic resolution-truncated scattering factor can 
be reduced to a one-dimensional integral through the 
Jacobian transformation: 

d~,,x 
p(r) = 47r0 f g(d*)d*2[sin (27rrd*)/27rrd*]dd*. 

d~nin 
(11) 

The integral is evaluated in pieces, with the assump- 
tion that g(d*) is approximately constant within each 
integral: 

point rather than integrated between d* 1 and d~. From n . d~ 
integration in the limiting case, Ad* ~ 0, it can be .p (r )= 47rOEg(-d ) f d*2[sin(27rrd*)/27rrd*]dd * 
shown that g is best sampled at the root mean square: i=1 - -d;_ 1 

-* (4) d, = [(d~ '2 + d'2_1)12] 112 

Although not required, it is convenient if the d* are 
evenly spaced: 

d i* = dmi n*  + (i - 1 ) A d * ;  n : (dma x *  -- dmin)/Ad,* *" 
integer n. (5) 

The Fourier transform of a solid sphere in reciprocal 
space, of radius h* and reciprocal-space density w, can 

n ( )  
p(r) = 47r0 E g -d* [{sin (27rrd*) 

i = 1  

- s i =  

= 47r0~-~ g(-d*)[{(Tr/2)/(27rrd*)3} '/2 
i = 1  

(12) 

(13) 
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Note that the definite integral contains either the 
Fourier transform of a sphere [cf. (10) and (7)] or a 
half-order Bessel function, J3/2. 

The electron density at any point in an M-atom 
structure is derived from 

M 
p(xyz) = E p(rm) 

m=l 

° (-,) 
=47r,,=1 ~ OMit=lYre di G[(rm, d*) 

-G(rm, d*_,)]. (14) 

3.2. Derivatives 

The derivatives of (14) with respect to refinable 
atomic parameters are required for least-squares opti- 
mization. Methods with faster convergence require the 
second derivatives (Tronrud, 1992). All of. these can 
be calculated analytically. First, the derivatives of the 
calculated density are derived for each of the atomic 
parameters and then it is shown how these can be used to 
calculate the derivatives of the least-squares residual. Let 
Pq be one of the atomic parameters of atom q; occupancy 
Oq, position (xq, yq, Zq) or temperature factor Bq. Note 
that the derivative of the calculated electron density, with 
respect to an atomic parameter, depends only on that 
parameter, i.e: 

Opxuz/OPq = Op(rq)/OPq. (15) 

From (14), 

Op n 02p 
OOm :47TiE19m(d:)(Gi-Gi-l); 002 

(:) Op = 47rOm~ Off -d 
OBm i=1 OBm (Gi - Gi-1). 

~ = 0 ;  

(16) 

(17) 

From the definition of 9, 

9 = f (d*)exp  (-Brad*2~4); (18) 

Off 
OBm = (-d*2/4)f(d*)  exp (-Bmd*2/4).  (19) 

Thus, 

Op __ 47FOre ~ (-d*2/4)9m(-dt)(Gi - Gi-1) 
OBm i=1 

(20) 
and, similarly, 

02p -4~-0,,,:~ (d*4/16)g,,,(~t)(c,- C,_,). 
OSk i=1 

(21) 

As the electron-density function is spherically symmet- 
ric, it is only the radial components of the positional 
derivatives that are nonzero. Let 

Then, 

= 2rrd*. (22) 

G =  ( d ' 3 / ~ 3 )  (sin ~ - ~ cos ~);  (23) 

OG/Or = (OG/Oqo)(Oqo/Or); (24) 

OVlar = [ ( d * 3 / ~ 3 ) ( c o s  ~ + qosin qo - c o s ~ )  

- (3d*3/qo4)  ( s in  qo - qocos qo)] ; (25) 

OG/Or = (1/r){[(d*3sinqo)/qo] - 3G} = G' (26) 

02G 
0 r 2 =  (-1/r2)  { [(d*3 sin qo) /~] - 3G} 

+ (d*3/v)27rd*[(cos~/~)- (sin qo/qo2)] 

- (3/r)G'; (27) 

02G 
Or 2 - ( l / r2)  { (3 - qa2)G - 3rG' 

- [ ( d * 3  sin qo)/qo] }. (28) 

The derivative of (14) with respect to the distance from 
atom rm is 

Op : 47rO Z g m ( - d * )  \Orm Orm ) (29) 
OTto i=1 

Substitution of (26) into this equation gives Op/Or, and 
02p/Or 2 can be similarly calculated. [These derivatives 
can also be calculated by differentiation of (11): 

[dmax ] 
°-ePo~ = (4~0/~)[f~,  9(a*)d *~- cos (2~a*)da* - p ,  

(30) 

where the integrals are evaluated piecewise with constant 
g(d*) as for (12).] 

The radial derivatives [(29)] must be decomposed into 
their Cartesian components. Consider the z component: 

OplOx = (OplOr)(Or/Ox), (31) 

O2p Or 
Ox 2 Ox 

where 
r = (x 2 + y2 + z 2) 1/2, (32) 

(OplO~) = ( x l , . ) ( ap /a , . ) ,  (33) 

O2p op - ~  

(34) 
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Ox z Or z • 

In the restrained least-squares refinement, a residual 
7~ is minimized that is the sum of electron-density and 
stereochemical terms: 

R --  T~p -~- 'T~.geom, (36) 

Rp(P) = Y] {[Spo(xyz) + k ] -  p~(P, xyz)} z, (37) 
x y z  

where po and p~ are the observed and calculated electron 
densities to be fitted by varying the atomic parameters 
P and where S and k are refinable scaling parameters 
required to bring the observed map to an absolute scale. 
To optimize the fit of the model to the electron density, 
the derivatives with respect to the atomic parameters for 
each atom, OT~p/OPm, are required. 

07~ o 
O'Pm = ~ -2[Spo(xyz) + k - pc(xyz)] Op~(xyz) 

xyz OPm ' 
(38) 

02RP { Op 2 = ~ - 2  [Spo(xyz) + k -  pc(xyz)] 02pc(xyz) 
~ y ~  OP~ 

- ( Op~(xYz) )2 " (39) 

The partial derivatives Op/OPm and 09p/OP 2 with re- 
spect to each of the atomic parameters have already been 
derived [(33), (35), (29), (16), (20) and (21)] and can 
be substituted into these last two equations. Note that, 
as shown in (15), the partial derivatives Op/OPm and 
02p/OP 2) contain only terms from the ruth atom, but 
the calculated electron density itself, p~(xyz), contains 
contributions from all neighboring atoms. The residual 
~p is therefore calculated by summing over all xyz grid 
points of the observed map that are close to any atom. 

3.3. Real-space R factor 

To assess the quality of the fit of a model to elec- 
tron density, a normalized real-space R factor, R ez', is 
defined as 

= E [Spo(Xyz) + k -  pc(P, xyz)]2 
x y z  }1 
x ½ [Spo(xyz) + k + pc(P, xyz)] 2 

(40) 

For an overall measure of quality, all xyz map grid 
points close to atoms are included in the summation. 
This is similar in concept to the R factor of Jones et al. 

z in the denominator, (1991), except for the factor of 

making it somewhat more compatible with conventional 
crystallographic reciprocal-space R factors but leading 
to values double those of Jones et al. (1991). 

4. Methods and results 

4.1. Accuracy of electron-density calculation 

The electron density for a single C atom (B = 15 A 2) 
was calculated at several different resolutions by three 
different methods: 

(1) Structure factors were calculated (Ten Eyck, 1977) 
for an atom at the center of a 10 A cubic unit cell, 
using analytical approximations to the standard scat- 
tering factors (Lee & Pakes, 1969; Tronrud & Ten 
Eyck, 1992). These were used for a resolution-truncated 
Fourier synthesis (Ten Eyck, 1973). 

(2) The FT(f) function (10) was used with Ad* = 
0.1A -1.  

(3) The spherical Gaussian function of Diamond 
[1971; equations (I) and (2)] was used. A search was 
made for the additional B factor that would give the 
best agreement of this method with method (1). 

The agreement of methods (2) and (3) with method 
(1) is good (Fig. 1). Comparison of the electron densities 
to those of method (1) shows that method (2) [FT(f); 
R ez~ = 0.007] is slightly better than method (3) (spher- 
ical Gaussian; R Ev = 0.042) for the 2/~ data shown in 
Fig. 1 and at 3 A (R Ev = 0.005 cf. 0.016). However, 
the principal advantage of FT(f)  is the absence of a 
requirement to smear the calculated electron density. For 
the spherical Gaussian, the optimum additional B factors 
are 28 A 2 at 2 A, 73 A 2 at 3 A and 139 A 2 at 4/~. 

The differences between the FT(f)  and spherical 
Gaussian methods are highlighted in Fig. 2. The spheri- 
cal Gaussian has a more extended tail whereas the 

0.5 

g.. 
.< 

• ~ 0.0 
20 

1.5 

,--n, 
1°i 

0.0 ! t : ," ' ' I 

0.0 0.5 1.0 1.5 2.0 
Distance from center (A) 

Fig. t. Calculation of electron density. Three different methods of calcu- 
lation are compared at two resolutions: (1) structure-factor calculation 
and resolution-truncated Fourier inversion (long dashes); (2) the n e w  

resolution-dependent function (solid lines); (3) spherical Gaussian 
smeared with optimized B factors of 73 A 2 (top) and 28 A 2 (bottom) 
(short dashes). The dotted line shows the electron density calculated 
at infinitely high resolution. 
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FT(f)  dies down to a small ripple beyond 2.4/~,. While 
the difference is modest, the overall contribution of an 
atom throughout a calculated electron-density map is 
the volume integral of the atomic density function. The 
volume of radial shells increases as the square of the 
radius and Fig. 2 demonstrates that the 'tails' of the 
spherical Gaussian increase the overall electron density 
more than the FT(f).  

4.2. Implementation 

Real-space refinement has been introduced as an ad- 
ditional module (RSREF) for TNT (Tronrud et al., 1987). 
The refinement thereby makes use of a particularly user- 
friendly stereochemical description that has been used 
extensively for both proteins and nucleic acids. RSREF 
provides TNT's control program SHIFT with a list of 
the derivatives [(38) and (39)] for the agreement of 
calculated and observed electron densities with respect 
to atomic parameters. 

RSREF contains 1350 lines of ANSI C and calls C and 
Fortran77 object libraries for general crystallographic, 
vector and matrix operations and for input/output. Stor- 
age for the observed and calculated electron densities is 
allocated dynamically, so that the resources required for 
a local refinement are minimal. Memory is allocated for 
a grid within a parallelepiped that encloses, with a small 
margin, those atoms that are to be refined. Observed 
electron-density values are read from dsn6-type files that 
are used by the programs FRODO (Jones, 1978) and O 
(Jones et al., 1991) using a Fortran interface. Through 
their direct-access structure and also through their organ- 
ization as 8 x 8 x 8 'bricks' of electron density (rather 
than as sections), input is minimized. Use of dsn6 files 

1.0 

0.5 

0.0 I. 
0.0 

\ \ I f "  \x "". 

I .  \ \\\ /'/ ,\ ...... 

( l' < ] i  
/.' , \ . 
~ ~\  ~, .......... 

it" "',,. 
!/! . ~\~ 

0.5 1.0 1.5 2.0 2.5 3.0 
Distance from center of atom (A) 

Fig. 2. New [Fr(f)]  and spherical Gaussian functions compared. Cal- 
culated electron densities relative to that at the center of the atom 
a r e  shown for the new FT(f) (solid line) and spherical Gaussian 
(Diamond, 1971; dash-dotted line). The resolution range is 20-3/~ 
and an optimal additional B factor of 73/~2 was used for the 
spherical Gaussian. (The dip in electron density at zero radius is 
due to truncation ripples from the 20 and 3/~ resolution limits both 
destructively interfering to their maximum extents at zero radius.) 
The dashed and dotted lines show, respectively, the relative electron 
densities of the new and spherical Gaussian methods weighted by the 
volume of the shell at that radius. 

also facilitates the development of these methods for 
interactive model-building applications. Other files are 
based on the token-driven free-format system of TNT. 

On a first pass, grid points are flagged if they are 
found to be within ,.m~, of any atom that is being 
refined. The electron densities of these grid points are 
calculated according to (14). The grid of the map need 
not be orthogonal. The optimal rc~l~ is about 3.4/~, as 
determined below. Form factors could be interpolated 
from a table. Here, they are evaluated from the multiple 
Gaussian approximation used by TNT (Tronrud et al., 
1987). Other analytical approximations (Vand, Eiland & 
Pepinsky, 1957; Lee & Pakes, 1969; Cromer & Waber, 
1974) that estimate the scattering to within 1% would be 
equally acceptable. It is computationally more efficient 
to calculate an atom's contribution to all local grid points 
before proceeding to the next atom than to search for all 
atoms that contribute to a given grid point. This means 
that the 9 coefficients [(14)] can be used repeatedly until 
either the atom type or the B factor changes, po is scaled 
to Pc by linear least-squares determination of S and k 
by minimization of the residual Rp [(37)]. On a second 
pass, the first [(38)] and optionally the second [(39)] 
derivatives are calculated as required for the mode in 
which TNT's SHIFT is to be run. Only grid points within 

max (see below) of the center of an atom are used ~'ref 
in the calculation of its derivatives. Evaluations of the 
algebraically derived partial derivatives have been cross- 
checked by comparison with finite difference methods. 

TNT is designed to be run as a series of 'long' 
cycles, each of which contains a number of 'short' 
cycles. On the first short cycle of each long cycle, 
TNT's control program SHIFT expects to be given 
derivatives from each of the modules such as RSREF and 
TNT's GEOMETRY. SHIFT then calculates a shift vector 
specifying the directions and relative sizes of shifts to 
all of the atomic parameters. SHIFT calculates the shift 
vector by one of four methods depending on the number 
of previous long cycles and the derivatives supplied. The 
steepest-descent and conjugate-gradient methods require 
only first derivatives but the gradient-over-curvature and 
conjugate-direction methods require second derivatives 
(Tronrud & Ten Eyck, 1992; Tronrud, 1992). A shift 
of one atom affects the electron-density fit and stereo- 
chemistry of its neighbors. Over the subsequent short 
cycles, a search is made for an optimal scale factor for 
the shift vector that minimizes the residual [(36)]. In 
each of the short cycles, a trial shift is applied and each 
of the modules is polled for its residual (function value 
in TNT terminology). RSREF can do this in a single- 
pass mode, specified by a command-line flag, in which 
no derivatives are calculated. 

Real-space refinement, as implemented here, will be 
most advantageous when it is applied to a fraction of the 
full unit cell. Whether one of several symmetry-related 
identical protomers or a small region of a protein is being 
refined, atoms from neighbors related by crystallographic 
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Table 1. Optimization of the cut-off radii 

Real-space R factors, R ez', are tabulated for the match of a nucleotide structure to a 3 A test map. The F'l'(f) method and the 
spherical Gaussian method (Diamond, 1971) are compared using different cut-off radii for contribution to the calculated electron 

m a . x  density rc~lcmax and for scaling/residual calculation rre f . 

Refinement 

rr~ '~ (A) Volume (A 3) 
1.00 4.2 

1.33 11 

1.72 24 

2.20 49 

2.74 97 

3.38 180 

4.10 322 

4.91 557 

Cut-off for electron-density calculation [rrm~ x (A)] 

Method 1.00 1 .33 1.73 2.20 2.74 
New:FT(f) 0.274 0.144 0.081 0.054 0.048 

Gaussian 0.259 0.140 0.084 0.063 0.069 
New:Fr(f) 0.192 0.093 0.075 0.063 

Gaussian 0.190 0.092 0.077 0.088 
New" FT(f) 0.149 0.123 0.097 

Gausstan 0.142 0.117 0.135 
New: FT(f) 0.203 0.163 

Gaussian 0.205 0.218 
New: Fr(f) 0.243 

Gausslan 0.362 
New: Fr(f) 

Gaussian 
New: FT(f) 

Gausslan 
New: FT(f) 

Gausslan 

3.38 4.10 4.91 
0.023 0.021 0.014 
0.070 0.070 0.070 
0.030 0.026 0.021 
0.090 0.090 0.090 
0.043 0.037 0.037 
0.138 0.138 0.138 
0.067 0.057 0.067 
0.220 0.220 0.220 
0.092 0.075 0.104 
0.365 0.365 0.365 
0.123 0.102 0.142 
0.450 0.450 0.450 

0.152 0.193 
0.496 0.496 

0.249 
0.547 

or noncrystallographic symmetry must be considered 
for correct stereochemical refinement and because their 
electron densities may overlap those of the atoms that are 
being refined. Support programs provide the following 
functions: 

EXPCOORD calculates the atomic parameters for 
crystallographically and noncrystallographically symme- 
try related residues that fall within a given box or within 
a given distance from any atom that is being refined. 

SEQUENCE is a parser, written in the language Lex, 
that prepares the input for TNT's GEOMETRY so that 
the coordinate file can contain disconnected peptide 
fragments generated by EXPCOORD. 

BOX & FIX calculates the dimensions of a box that 
surrounds a zone of residues and flags fixed atoms in a 
surrounding buffer region. 

RMDERIV collates the output of two runs of TNT's 
GEOMETRY to create a list of derivatives for one of 
the symmetry equivalents, which includes the nonbonded 
interactions with neighboring molecules. 

REEXPAND updates the parameters of 'fixed' atoms 
with those from symmetry-equivalent atoms that have 
been refined. 

4.3. Optimization of parameters 

Two limiting radii are used by RSREF: r~ml~ is the 
distance beyond which the contribution of an atom 
to the calculated electron density of a pixel will be 

m a x  assumed to be zero; and rre fmax (~ 7.calc ) defines a sphere 
enclosing grid points around each atom that are used for 
refinement, namely in scaling, derivative and residual 
calculations. RSREF is provided with command-line 
options to facilitate the optimization of these parameters, 

which may depend on the maximum resolution. An 
example survey of rre fmax and rcal cmax for a test case is 
shown in Table 1. The test coordinates a re  those of 
a small nucleotide. A 3 ]~ test map was calculated 
from the coordinates using method (1) (§4.1). The R Ez~ 
values of Table 1 compare the test map with electron 
densities calculated by RSREF using either method (2) 
[FT(f)] or method (3) (spherical Gaussian), using all 
atoms within _ma× of any given pixel. These calculated "/-calc 
electron densities were least-squares scaled to the test 

w l t h m  7"re f o f  any map using only those grid points • • max 
of the test atoms. The real-space R factor, R ez~, was 
calculated using only these grid points. For the spherical 
Gaussian, the electron-density calculation and scaling 
were repeated for each pair of radii to search for the 
best additional B factor in steps of 10/~2. (A local search 
with a finer step indicated that the minimal R ez' for the 
spherical Gaussian is within 0.03 of the true minimum.) 

Calculation radius "%at~-ma~" The accuracy improves as 
r~ml~ increases, with substantial improvements up to 
about 3.4/1, from the atom centers. The larger radii 
(~3/~)  are important for several reasons: 

(1) The overall contribution of each radial shell to the 
map is weighted by the square of the radius (proportional 
to the shell volume; Fig. 2). 

(2) The average number of atoms that are within a 
sphere surrounding a grid point and therefore contribute 
to its density shell is proportional to the cube of the 
radius. 

Refinement radius ,.ma~ ReZ~ increases steadily as 
~ T e f  " 

rmax increases. Again, there are several likely causes: ref 
(1) The scaling of calculated and test electron densi- 

ties has reduced degrees of freedom as the radial cut-off 
increases and more grid points are used. 
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(2) ff only the central regions are used, fitting is less 
sensitive to the exact shape of the calculated electron- 
density function. 

In the choice of an appropriate rrm~, several other 
factors should be considered: 

(1) If a large volume is used for partial-derivative 
calculation, partials will be calculated using regions 
where other atoms dominate. There will be a tendency 
for atomic parameters to shift to compensate for the 
errors of their neighbors. This would lead to slow 
convergence. 

(2) Computational complexity increases with the num- 
ber of grid points [cx _max~31 t r e f  J J" 

(3) An experimental map contains errors. The accu- 
mulated contribution of error to the residual and partial 
derivatives (noise) will increase approximately as the 
square root of the number of grid points [(fm~x)3/2]. 
For radii < 1.5/~, the total volume-weighted density of 
radial shells (signal) also increases (Fig. 2). Beyond the 
maximum, the signal-to-noise ratio must decrease. 

(4) The radius of convergence of real-space refinement 
is proportional to the overlap between observed and 
calculated electron-density peaks (Diamond, 1985). The 
radius of convergence is therefore proportional to rrm~ x. 

(5) For computational expediency, Diamond (1971) 
mimimized a volume integral: fv(Po - P c )  2dV. The 
integrals needed for the normal matrix were precise 
only with gross oversampling and grid sum corrections 
[equation (9) of Diamond (1971)]. The current method 
minimizes a simple difference at grid points [(37)], 
avoiding these problems. The maps need to be over- 
sampled, but only to the extent that the five parameters 
per atom are overdetermined several-fold. 

M 1 T I O . X  The choices of rc~l~m~ and especially rr~ f are compro- 
mises that depend on the resolution, grid spacing and 
type of refinement: quick and crude or slow and precise. 

m a x  _ _  For refinements at ,-~3/~, , .max 1.6/~ and rc~lc 
~ r e f  ~ 

3.4/~, have worked well, with smaller values sometimes 
being used for crude initial refinement. Ad* has usually 
been set to give n = 10 evaluations of the form factor 
[(14)]. With a small loss of precision (increasing R ez~ 
by < 0.02), refinement can be accelerated through the 
use of n = 5 terms. 

4.4. Test 1: isolated atoms 

A 3 A electron-density map was calculated from four 
nonoverlapping atoms. For repeated tests, coordinates 
were first randomly displaced and then refined without 
the use of geometrical restraints. Displacements of var- 
ious root-mean-square (r.m.s.) magnitudes were tested. 
The convergence radius was about 1.0/~ using either the 
FT(f)  function or spherical Gaussians, and the residual 

• positional error was 0.06/~ for spherical Gaussians and 
0.03/~ for the FT(f) function. Convergence was reached 
in four to eight cycles. Thus, for isolated atoms, both 
functions appear acceptable. 

4.5. Test 2: overlapping atoms 

The second test was much more stringent because 
the test map was calculated from a nucleotide with 
atoms separated by ,,ol.5/~ whose electron densities 
overlap at 3/~ resolution. Furthermore, no geometrical 
restraints were used and shifts were not dampened. 
Thus, this is an attempt at free-atom refinement at 
subatomic resolution. Refinement using the spherical 
Gaussian function diverges, even with a r.m.s, dis- 
placement of only 0.1/~. Refinement with the FT(f) 
function diverges only with initial displacements _>0.5/~ 
(Fig. 3). Although refinement is not precise, with initial 
displacements of 0.2 to 0.3 A, refinement moves the 
coordinates in the right directions, approximately halving 
the initial error. This modest success is probably due to 
better representation of the outer 'tails' of the atomic 
electron densities (see §5). The improved conditioning 
of free-atom refinement using the FT(f) function is 
probably the reason why stereochemical restraints can 
be used. Methods using spherical Gaussians require tight 
rigid-body constraints (Diamond, 1971; Jones & Liljas, 
1984). 

4.6. Test 3: canine parvovirus capsid 

The empty capsid structure of canine parvorirus 
(CPV) provided a good test example. Its structure had 
initially been determined by molecular replacement, 
starting with an unrefined model of the full capsid that 
contains DNA (Tsao et al., 1991). The empty structure 
was refined (Wu, Keller & Rossmann, 1993) from 
a conventional R factor of 35% to one of 21%, in 
six rounds of reciprocal-space refinement, using either 
restrained methods (PROLSQ; Hendrickson, 1985) or 
molecular dynamics (X-PLOR; Brtinger et al., 1987). 
Between rounds 1 and 2, parts of the model were rebuilt 
manually. Between rounds 3 and 4, the oscillation data 

0.8 

0.6 

0.4 

. ~ .  . . . . .  _ . ~ . ~  . . . . .  

t ~  

0.2 i 

-----: . . . . . . . . .  I 

0.0 
0.0 4.0 8.0 

Refinement cycle number 

Fig. 3. Refinement of overlapping free atoms. A test map was calculated 
from a nucleotide with atoms whose electron densities overlap at 3/~ 
resolution. Random displacements were introduced before refinement 
(cycle 0) and the progress of real-space refinement [using the FI ' ( f )  
function] is shown. Each line shows the progress of refinement started 
with a different initial displacement whose size is shown by the y 
intercept. 



MICHAEL S. CHAPMAN 77 

Table 2. CPV empty capsid model statistics at selected stages of  refinement 

The 'final' model is that of Wu et al. (1993), except that the 85 water molecules per protein have been removed. Following the 
r.m.s, contact error is the number of poor contacts per protomer. The refinement round (t) follows the numbering scheme of Wu 
et al. (1993). 

R.m.s. bond/contact errors R.m.s. differences 

Model/roundt R . . . .  (%) D a t a  Length (A) Angle (o) Torsion angle (o) Contact (/~) Cf. input Cf. final 
A: unrefined 34.7 3 A/3a 0.022 2.6 20.4 0.28 (216) - 1.04 
B: after PROLSQ/1 30.6 3 A/3a 0.026 4.2 21.5 0.25 (167) 0.77 0.97 
C: RSREF from A 29.1 3 A/3a 0.020 2.4 16.0 0.04 (234) 0.75 0.88 

D: input to X-PLOR 27.9 3.2 A/4a 0.021 3.9 21.0 0.26 (164) - 0.91 
E: after X-PLOR/3 25.2 3.2 A/4a 0.027 4.5 20.3 0.60 (15) 0.47 0.88 
F: RSREF from D 25.3 3.2 A/4a 0.026 4.5 16.8 0.12 (330) 0.61 0.87 

G: input to PROLSQ 26.2 3 A/3a 0.027 4.5 20.1 0.67 (23) - 0.64 
H: after PROLSQ/4 24.4 3 A/3a 0.022 4.3 20.5 0.26 (86) 0.32 0.54 
I" RSREF from G 24.0 3 A/3a 0.018 4.6 17.4 0.16 (155) 0.48 0.61 

J: Final PROLSQ/6 23.1 3 A/3a 0.023 4.4 19.6 0.29 (94) - - 

were postrefined (Rossmann, 1985), again using slightly 
different cell dimensions, and the phases were re-refined 
by symmetry averaging (Rossmann et al., 1992). The 
starting phases were calculated from the atomic model 
of round 3, but past experience has shown that the power 
of 30-fold averaging is sufficient to remove model bias 
(see, for example, Kim et al., 1989). 

Both PROLSQ and X-PLOR have been adapted for 
virus structure refinement. Arnold & Rossmann (1988) 
have shown that, with the accurate phases available 
for viruses, refinement against complex structure factors 
(rather than magnitudes) is effective. For the CPV empty 
structure, a compromise crystallographic residual was 
used (Wu et al., 1993): 

:  ((1--Wh)(IF bsl -- IF a": 

+ wh [(A~ bs - kA~alc) 9 

-.t- (B~bS - kB~alc)2] } ,  (41) 

where k is a scaling constant and (Ah, Bh) are the 
real and imaginary parts of the structure factor Fh of 
reflection h that has figure of merit Wh. If all Wh 
were zero, this would be conventional crystallographic 
refinement. 

As was done by Arnold & Rossmann (1988), to reduce 
computing time, each cycle of PROLSQ was run with 
alternating subsets of reflections. The R factors given 
by Wu et al. (1993) were calculated using the same 
subset of data as was used for the immediately preceding 
refinement. These R factors might be artificially low 
because refinement can overfit a model to the diffraction 
data (Brtinger, 1992). The R factors quoted in Table 2 
were recalculated using data that were selected randomly 
from the whole data set. These R factors are slightly 
higher, showing that some overfitting had occurred in 

the preceding cycle of PROLSQ. However, they are still 
expected to be lower than the R~ ee proposed by Brtinger 
(1992) because the reflections had been used in previous 
cycles of refinement. The stereochemical statistics were 
also recalculated using TNT's GEOMETRY (Tronrud et 
al., 1987) to ensure that the same standard parameters 
and weights were used to compare all atomic models. 

To reduce the computational requirements, X-PLOR 
was run using a simulation at 2000 K rather than the 
usual 3000-4000K (Wu et al., 1993). Refinement at 
higher temperatures has been shown to be more effective 
and it might have been possible to reduce the R factor 
by an additional 1% (Briinger et al., 1987). 

RSREF was compared to the three rounds of refine- 
ment (1, 3 and 4) during which greatest improvement 
had been seen by Wu et al. (1993). Round 1 refined the 
initial model using PROLSQ. Round 3 used X-PLOR 
and round 4 was the final PROLSQ refinement prior to 
the inclusion of isotropic temperature factors and water 
molecules. In all cases, RSREF was run using the final 
symmetry-averaged map of Wu et al. (1993) and using 
weights adjusted to give stereochemical statistics similar 
to those of the corresponding rounds of Wu et al. (1993). 
Refinement and model statistics are given in Table 2. In 
judging the quality of the refinements, several statistics 
should be compared as there are biases in each. p~ee 
(Brtinger, 1992) could not be calculated because all of 
the data had been used in previous rounds of PROLSQ 
or X-PLOR. A conventional R factor (R c°nv) can give an 
unrealistically good estimate of model quality following 
reciprocal-space refinement (Brtinger, 1992) because the 
differences IIF°bsl- IFCa'¢ll, used to calculate the R 
factor have been minimized directly (see §5). Equally, 
R Ev should be lower for a real-space-refined model than 
a reciprocal-space-refined model of similar quality. The 
nonlinear least-squares technique is guaranteed only to 
find a local minimum in the residual. A 'final' structure 
with R c°nv'~ 0.2 retains significant errors and is not the 
'correct' structure of the global minimum. Models from 
the final cycles of refinement will contain similar errors 
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(a) 

(b) 

(c) 

(~ 
Fig. 4. The fit of models to the electron density. Stereoviews of the fits 

of residues Trp 214 (bottom), Asp 215, Arg 216 and Ser 217 (top) to 
the symmetry-averaged electron density. (a) RSREF real-space-refined 
model C (thick lines) and unrefined model A (thin lines). (b) Initial 
refinements: RSREF model C (thick lines) and PROI_~Q model B (thin 
lines). (c) RSREF model F (thick lines) and X-PLOR-refined model E 
(thin lines). (d) RSREF model I (thick lines) and later run of PROLSQ 
(model H; thin lines). The figure was drawn with the program O (Jones 
et al., 1991) using the electron density and reciprocal-space-refined 
models of Wu et al. (1993). 

and the difference in coordinates (compared to the final 
'yardstick') underestimates the errors of the models. As 
the biases of these statistics are different, the quality of 
refinement should be judged by considering them all. 

For the early steps in refinement, comparison of 
models B and C (Table 2) shows that RSREF performs 
slightly better. The r.m.s, difference between models 
B and C is 0.75/~. The R factor is lower (even with 
tighter geometry) and the model has moved closer to 
the final model. At an intermediate stage of refinement, 
the R factors of models E and F suggest that RSREF 
is comparable to X-PLOR. The r.m.s, movements are 
slightly larger for RSREF but the models have similar 
r.m.s, differences with the final model. Between models 
E and F, the r.m.s, difference is of similar magnitude, 
0.68/~. Towards the final stages of refinement, compar- 
ison of models H and I suggests that RSREF performs 
slightly better than PROLSQ. Models H and J are highly 
correlated so r.m.s, positional comparisons are not a 
good indicator. 

Fig. 4 compares the fit of each of the models to 
the electron density. In subjective comparisons using 
O (Jones et al., 1991), without knowing which was 
which, crystallographic colleagues picked real-space- 
refined models over the corresponding reciprocal-space- 
refined models as fitting the electron density slightly 
better. The differences are more obvious at the start of 
refinement (model B cf. model C) than at the end of 
refinement (model H cf. model/) .  Comparison of the 
unrefined model A to model C shows that RSREF has 
centered the backbone and pulled all of the side chains 
further into the electron density. It is less obvious from 
this figure that it has also moved all of the backbone 
carbonyls towards slight bulges in the electron density. 

Convergence of RSREF was monitored using the real- 
space R factor R ez~ [(40)]. Its asymptotic decrease to 
convergence for each of the three rounds of refinement 
is shown in Fig. 5. Weights were kept constant through 
these cycles, except for a slight tightening of geometry 
after cycle 4 of the refinement of model G to model 

0 . 7 u  

0.6 
,x 

0,4 . . . . . . . . . . . .  I 0.0 5.0 10.0 15.0 Cycle no. 
Fig. 5. Convergence of real-space refinement. The refinement of model 

A to model C is shown by a solid line, that of model D to model F 
by dash-dotted line and that of model G to model I by a dashed line. 
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I. A few additional cycles were used to adjust the 
weights to give stereochemical statistics similar to the 
rounds of Wu et al. (1993), yielding R Ev = 0.526, 
R ev = 0.464 and R Ev = 0.419 for models C, F 
and I, respectively. Convergence is slightly faster if 
second derivatives are used, except for stereochemically 
very poor models when it is easier to find suitable 
weights if only first derivatives are used. Alternate 
radical loosening and tightening of geometrical restraints 
can sometimes enable a crude model to be refined by 
conventional reciprocal-space methods. With RSREF, 
this is no more effective than smooth convergence to the 
target values, perhaps because the convergence radius of 
real-space refinement is already quite large. 

For the ,-.,600 residues of the CPV noncrystallographic 
asymmetric unit and ,~ 600 residues of symmetry- 
equivalent neighbors, full derivative calculation by 
RSREF takes 7 rain of CPU time on a MIPS 4000 
processor. Its memory requirements are modest, about 
2.5 Mbytes of virtual memory, and it runs optimally if 
at least 1.5 Mbytes of physical memory are available. 
For a typical long refinement cycle that includes two 
short cycles, the turnaround time is about 25 min per 
long cycle. 

5. Discussion 

5.1. Electron-density functions compared 

The FT(f)  electron-density function [(10)] can be 
used to calculate the electron-density function of a multi- 
atom structure with about three times the accuracy of 
spherical Gaussians (Table 1). The slowly asymptotic 
form of the Gaussian tail (Fig. 2) is a poor approxi- 
mation to the electron density of atoms as calculated 
from resolution-truncated sets of structure factors. Low- 
resolution maps are modeled with the spherical Gaussian 
method by adding an arbitrary atomic radius constant or 
equivalent B factor to all atoms (Deisenhofer & Steige- 
mann, 1975). The optimal constant is very dependent 
on the resolution (see §4.1 above) and on the integration 
volume: optimal B factors for the data of Table 1 ranged 
between 30 and 80 ]k 2. There is no a priori reason to 
expect the most appropriate constant to be the same for 
atoms of different elements and thermal vibrations. The 
FT(f)  function avoids these problems. 

5.2. Reciprocal-space R factors 

There are several reasons why a real-space-refined 
model might have a higher R factor than a conven- 
tionally refined model of equal quality. Minimization 
of f ( p o -  Pc)gdv is equivalent to minimization of 
( l / V )  ~h( lF~  b s -  F~a'cl) 2 (Diamond, 1985). Compare 
this to the residual minimized in conventional crystallo- 
graphic refinement (Hendrickson, 1985): 

T~X-ray _.. E [O.2(ffh)]--l( F/~bs[_ [F/~al c ) 2  (42) 
h 

where cr(Fh) is the estimated standard deviation of F.  
Real-space refinement can therefore be considered to 
be a phased analog of reciprocal-space refinement in 
which all reflections are given equal weight. Weights 
of 1/cr2(Fh) are used in reciprocal-space refinement 
because they should yield a solution with minimal error 
in F and therefore a low R factor. Other weighting 
schemes, including the uniform weighting of real-space 
refinement, will yield slightly higher R factors. 

Briinger (1992) has demonstrated that the the conven- 
tional R factor (R c°n') may be artificially lowered by 
overfitting a model to structure factors. R c°n" is unlike 
standard statistical tests of goodness of fit in that no 
account is taken of the degrees of freedom [number of 
independent atomic parameters; see Hamilton (1964)]. 
This explains Briinger's observation that the difference 
between R ~°n" and R~ ~ is greatest at low resolution 
where the ratio of data to parameters is low. The 
crystallographic asymmetric units of viruses have many 
identical copies of the same molecule, giving a high ratio 
of total data to parameters, and it is expected that R ~°"v 
should be only slightly lower than R~ ~.  However, if the 
model is refined against a subset of the data and R c°nv 
is calculated with the same subset, then R ~°r'' is likely 
to be underestimated. 

As real-space refinement implicitly uses all data, but 
previous viral refinements have used partial data sets, 
for comparative purposes, it is useful to know by how 
much R c°n" can be lowered. R factors were recalculated 
for CPV and other examples. For initial refinement 
cycles, R c°n" calculated from the subset of data used 
for refinement could be compared with data that had not 
been used in refinement. For later cycles, it was com- 
pared with a random selection from the whole data set 
from which different subsets had been used in previous 
refinement cycles. With > 150 000 reflections (A and B 
coefficients), there was no appreciable lowering. With 
45 000 to 60000, R c°n" was lowered by about 1.2%, 
and with 14 000 to 30 000, R ~°"v was lowered by about 
4.5%. 

5.3. Real-space refinement and virus structures 

The statistics of Table 2 show that, while RSREF 
and X-PLOR are comparable, the performance of RSREF 
can exceed that of PROLSQ. The differences in model 
quality are relatively small. RSREF does not, for exam- 
ple, alleviate the need for manual rebuilding. There are 
several reasons why RSREF might be slightly better: 

(1) PROLSQ was used with subsets of the data, 
whereas real-space refinement is equivalent to use of 
all of the data simultaneously. 

(2) Real-space refinement might have a larger con- 
vergence radius. 

(3) Real-space refinement has the potential for being 
much better conditioned than reciprocal-space refine- 
ment. In reciprocal space, the structure factors depend 
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on all atoms and therefore the derivatives are highly 
interdependent. In real space, the interdependency is 
limited to the number of atoms whose electron densities 
overlap. Good conditioning is apparent not only in the 
resulting model but also in the number of iterations 
required for refinement. It was rare that more than two 
short cycles were required for optimization of the shift 
vectors. 

The major attraction of RSREF is that it is much 
faster than either PROLSQ or X-PLOR. For a typical 
virus, each cycle of PROLSQ requires several hours 
of supercomputer CPU time and generally has a turn- 
around time of about 24 h. Each round of X-PLOR takes 
many days on a supercomputer. Each (long) cycle of 
RSREF-TNT for a viral protomer typically turns around 
in less than 25 min on a desktop graphics workstation. 
Each round of refinement (,,~ 15 cycles) can be completed 
overnight, compared to several weeks for PROLSQ or 
X-PLOR. With RSREF, such refinements will no longer 
be daunting. 

5.4. RSREF and protein structures 

Owing to high noncrystallographic redundancy, 
viruses have phases that are unusually accurate (Arnold 
& Rossmann, 1988). For viruses, it is beneficial to 
implicitly use the phases in real-space refinement. 
Real-space refinement is unlikely to replace reciprocal- 
space refinement for proteins, for which it is desirable 
that refinement be independent of poorly determined 
experimental phases, but it may be a useful addition. 
Much effort is expended in manually improving the fit 
of models to the electron density to ensure that they 
are within the convergence radius of reciprocal-space 
refinement. With consideration of this, a macro has 
been written to run RSREF from within the graphics 
program O (Jones et al., 1991). Within a couple of 
minutes, several cycles of refinement can be run for a 
short zone of residues and their neighbors. The macro 
has been successfully applied to examples with good 
maps and tests will be extended to a systematic survey 
of structures with maps of poorer quality (Zhou & 
Chapman, work in progress). The RSR tool that is 
available in O is able to search for the best fit of 
rigid-body fragments to the density. The RSREF-based 
macro is a substantial improvement in that it is a least- 
squares refinement incorporating full bonded/nonbonded 
geometrical restraints and uses a much improved 
electron-density function. Improvement of the starting 
model will enable a more conservative approach to 
refinement, lessening the chance that an incorrect model 
could be found with an acceptable R factor. 
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